
Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

Assisting Students in Finding their Own Bugs in

Programming Exercises using Verification and Group

Testing Techniques

Long H. PHAM
University of Technology, Ho Chi Minh City, Vietnam

longph@cse.hcmut.edu.vn

Nam P. MAI
University of Technology, Ho Chi Minh City, Vietnam

bkiter09@gmail.com

Mai H. DINH
University of Technology, Ho Chi Minh City, Vietnam

maidh91@gmail.com

Tho T. QUAN
University of Technology, Ho Chi Minh City, Vietnam

qttho@cse.hcmut.edu.vn

Hung Q. NGO
State University of New York at Buffalo, New York, USA

hungngo@buffalo.edu

ABSTRACT

We combine theorem proving with group testing to develop an online intelligent

tutoring system that can automatically verify students’ programming exercises

without running their programs. In particular, our system can indicate suspicious

portions in programs which may cause logical errors. This system is basically

platform-independent, which can be adapted to teaching any imperative language

like C, C++ or Java. Group testing, on the other hand, helps us reasonably locate

the programs’ potential portions that are logically wrong. The experiments show

that our system can detect error parts in programs quite well. So our system can

act like a virtual tutor in programming courses. It should be very useful for any

distant learning programs, which these days are widely in use.

Keywords: Intelligent Tutoring System, Programming Exercises, Program

Verification, Bugs Locations, Group Testing.

mailto:longph@cse.hcmut.edu.vn
mailto:bkiter09@gmail.com
mailto:maidh91@gmail.vn
mailto:qttho@cse.hcmut.edu.vn
mailto:hungngo@buffalo.edu

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

I. INTRODUCTION

Programming courses are essential for any computer science study. To master

programming skills, experience shows that practising with problems is the best

method. In traditional education, the best practice applied so far is that class tutors

have to read students’ programs to verify their correctness. However, there are

often too many programs that need to be verified, and reading others’ code is very

error-sensitive. Thus, traditional education becomes less effective in programming

courses.

An automated assessment system is a good solution for this problem. Most of

these systems check whether the students’ programs can pass all test cases in an

automatically generated test suite or not (Douce et al., 2005; Ala-Mutka, 2005;

Ihantola et al., 2010; Kaushal & Singh, 2012; Jurado et al., 2012). However, this

approach has some disadvantages. Firstly, the test suite must be large enough to

cover all possible errors in the program. In addition, executing a possibly bugged

program is potentially dangerous for the system.

To overcome such obstacles, static methods are proposed to verify programs’

correctness statically without running programs. In Quan et al. (2009), two static

methods of theorem proving and model checking are combined to build a web-

based tutoring system. These methods are also called formal methods, which

means that they use mathematics-based techniques to check the program’s

properties. While theorem proving can verify the program’s correctness, model

checking can generate counter examples to help trace down the bugs via the

corresponding execution flows if the program is false. The analysed results are

then shown to students.

However, this system can only help learners to become aware of a program’s

correctness. It cannot help to effectively locate the root causes of the problems

since the generated counter examples are too complicated for students to follow.

Moreover, determining the root cause locations alongside the execution flows

provided by the counter examples is non-trivial, especially for novice

programming learners.

Thus, it is intuitively more convenient if we can identify the parts of the program

that most likely contain the root causes and show them to students for further

investigation. In industry, some fault localisation methods can serve this purpose.

However, they usually consume too many resources, which makes them

unsuitable in an education environment. This motivates us to develop a framework

in which we combine theorem proving with group testing to achieve the goal.

Whereas the theorem proving technique is quite efficient to check the program’s

correctness, group testing is a simple yet powerful technique which can locate the

parts in the program containing bugs. Using group testing is a practical approach

since it helps us avoid involving complicated and commercial tools of bug

localisation which are not optimum for the learning environment in Vietnam at the

moment. The experiments show that our group testing technique can detect error

parts correctly in 88% of cases in real non-trivial programming exercises.

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

The rest of this paper is organised as follows. Some fault localisation methods are

discussed in Section II. Then Section III presents our proposed framework. In

Section IV we discuss the group testing technique and show how to use it to

identify suspicious portions in programs. A case study is given in Section V. We

present our experiments in Section VI. Finally, Section VII concludes the paper.

II. FAULT LOCALISATION METHODS

Fault localisation methods aim to detect error parts, or bugs, in a program based

on testing. There are two approaches in this field: spectrum-based and model-

based. Whereas spectrum-based methods use statistical information from

programs’ executions to give suspicious ranks to each statement, model-based

methods build a model from the executions and use inference rules to determine

error parts (Abreu et al., 2008). Although a model-based approach is more

accurate than a spectrum-based one, building the model and using inference rules

make implementing a real system too complicated. So most of the works in the

fault localisation field focus on a spectrum-based approach.

In a spectrum-based approach, the input is execution of the program with a

predefined test suite, and the output is a statement ranking from most to least

suspicious. Some spectrum-based methods are presented as follows:

 FOnly (Zhang et al., 2012) is a method that uses only failed test cases to

rank statements. It calculates failure rate G(c) that statement s is executed

c times to get pairs c,G(c) for each statement. Then it plots these

pairs in a diagram and fits the line through them. The statement that has

the steeper line is more likely to contain errors.

 In Jones & Harrold (2005) and Abreu et al. (2009), two methods are

introduced, which build a function and use information in executions of

the program to give suspicious ranks to the program’s statements. The

information is the number of passed/failed test cases containing

statements and in total.

 In Jeffrey et al. (2008), a method called value replacement is presented. It

alters values that are used in statements in failed executions and checks

whether this alteration produces the correct output. Those statements

containing values that are more likely to produce the correct output after

the alteration are more likely the error ones.

 Renieris & Reiss (2003) presents some other methods such as set-union,

set-intersection and nearest neighbour. In these methods, the system finds

the initial set of most suspicious statements based on set operations. Then

a search technique called SDG-ranking is applied to rank other

statements.

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

Although the above methods can detect error parts in programs, they need a lot of

calculation time before giving the answer. Thus, they are suitable for an industrial

environment but are not preferable in the education domain. In this paper, we

consider another mathematical approach, known as group testing, which can

localise the error parts based on test results. Group testing is simple to implement

yet can produce reliable results, making it a desired choice for educational

applications.

III. THE PROPOSED FRAMEWORK

Correctness Proving

Group Testing

LearnerTeacher

Problem Description

Web-based Interactive System

Axiomatic Processing

Analysis

Coordinator

XML-based

Database

Information

Exchange

Figure 1: The proposed framework

Figure 1 depicts our proposed framework with three actors: Teacher, Learner and

Coordinator. The Teacher’s role is providing programming problems. These

problems are presented in the Problem Description module. When Learners visit

the system, they can try to solve these problems. The Learner’s submitted program

is verified by the Correctness Proving module. If an error is detected, the program

is moved into the Group Testing module to identify error parts. The program’s

analysed results are given to the Learner. The Coordinator can use the system’s

information, such as common errors or behaviours of active learners, to assess the

course’s performance. This information is stored and analysed in the Analysis

Module.

Figure 2: List of exercises

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

Figure 3: A program submitted by student to our system

The Information Exchange module helps other modules exchange data. These data

are XML-based and stored as a database for convenience.

The above framework (where Group Testing module is replaced by Model

Checking module) has already been implemented as a real web-based system
1
. In

this system, there are some predefined programming problems as in Figure 2.

Students can choose to implement any problem. Then the website navigates to an

interface in which students can write and submit their code, as in Figure 3.

Thus, our framework is considered an improvement of the existing system and is

made from two approaches: theorem proving to verify correctness and group

testing to identify error parts. Quan et al. (2009) present the details of theorem

proving. In the following section, we will discuss the group testing technique.

IV. GROUP TESTING FOR FAULTS LOCATION

A. Group testing

In 1943, Dorfman wanted to test whether any conscripts had syphilis in a very

large population of soldiers during WWII (Dorfman, 1943). Instead of individual

1
 http://elearning.cse.hcmut.edu.vn/provegroup/index.jsp

http://elearning.cse.hcmut.edu.vn/provegroup/index.jsp

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

testing, which is very costly in terms of time and effort, the soldiers were divided

into groups in a specific way, with each soldier belonging to more than one group.

Then blood samples of each group were tested together. If the test outcome for a

group was positive, at least one soldier in this group was infected. Otherwise, all

members of the group were healthy. More importantly, the test outcome could be

used to identify exactly who were the infected individuals. This technique is

known as group testing.

Suppose we have a group testing strategy with t test samples and N items. We can

represent this strategy using a t x N binary matrix,)(ijmM where 1ijm iff

item j belongs to test sample i. We will also use iM to denote the set of columns

corresponding to the 1-entries of row i. Similarly, jM is used to denote the set of

rows corresponding to the 1-entries of column j. In other words, iM is the ith test

sample, and jM is the set of tests contains item j.

Example 1. Below is a testing matrix with t = 4 and N = 6:

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1M is st1 test sample, corresponds to st1 row in testing matrix.

1M corresponds to the first column, indicates the set of tests contains st1 item. In

that case, only st1 and nd2 tests contain the first item.

Definition 1 (Separable matrix). A binary matrix M is d-separable if the unions of

up to d columns of M are all distinct.

Definition 2 (Disjunct matrix). A binary matrix M is d-disjunct if the union of

arbitrary ≤ d columns does not contain another column.

Example 2. In Example 1, all columns in testing matrix are distinct, so it is 1-

separable matrix. And it is also 1-disjunct matrix because if we pick up an

arbitrary column, this column does not cover any other columns.

If M is d-separable matrix and the number of positive items in the population is

less than or equal to d, we can always exactly determine where they are from the

test outcome using non-adaptive combinatorial group testing theory. In particular,

if M is d-disjunct matrix, the positive items can be determined effectively using

proper decoding algorithms.

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

Example 3. Following is a 1-disjunct matrix with 10 items:

1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1

Suppose there is only 1 positive item in the population. With this matrix, if the test

outcome is {1 1 0 0 0}, the first item is the positive one, since it is the only case

that can make the outcomes of the first two test samples positive and the rest

negative. Similarly, for any other possible test outcome, we can indicate which

item is positive, although there are only 5 test samples used.

B. Fault localisation using group testing

In this section we discuss using group testing to determine fault locations in a

program. Firstly, we define a unit block of a program, which is a program portion

which should not be logically divided into smaller parts when locating bugs. It can

be a basic block on a concrete program or an abstracted structure in an abstract

program. Let C be a program, an ordered set nC B,...,BP 1 where iB is a unit

block of C is called an execution path of C if there exists an input that makes P

execute from iB to nB with the same order as described in CP .

Example 4. Suppose we have a function:

int isPositive(int n)

{

 if (n > 0) {

 return X;

 } else {

 return Y;

 }

}

Its unit-block representation will be:

if S0

 S1

else

 S2

Thus, this function has two possible execution paths: (S0, S1) and (S0, S2).

A testing matrix M of C is defined as a binary matrix)(ijmM where each

column jM corresponds to a unit block jB of C, denoted as
j

MB . A row iM of

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

M is considered as a testing path, denoted as i
MP iff CP

where Cij
j

M Pm:Bj 1 .

Thus, when we use test cases to test a program P, it can be considered as if we are

using a testing matrix M whose rows correspond to the execution paths produced

by the test cases when executed on P. In this context, a positive item is a unit

block that causes a bug in the program. The process of using matrix M to find

bugs on a program P is denoted as M,P . The complexity of this process

depends on the number of unit blocks and the program’s structure.

Example 5. If one can produce two test cases corresponding to P1 and P2 for the

function in Example 2, the testing matrix will be:

S0 S1 S2

1 1 0

1 0 1

Suppose the function has at most 1 error (bug). Since the testing matrix is 1-

separable, we can determine the error block based on the test outcome. If the test

outcome is (0, 0), the function has no bug. If the test outcome is (1, 1), the error

block is S0. Similarly, if the test outcome is (1, 0) or (0, 1), the error block is S1 or

S2 respectively.

In the white-box testing technique, we try to generate the test cases to cover all of

a program’s possible execution paths. The strategy we use to generate test cases is

based on genetic algorithm (Goldberg, 1989). Firstly, the system generates two

test suites randomly. The number of test cases in each test suite is equal to the

number of rows in the testing matrix. These test suites will then be crossed over

with each other. Test cases corresponding to untested execution paths are kept in

the final test suite. Then the system goes into a loop. In each step, a new test suite

is generated and crossed over with the current final test suite. Thus, the final test

suite will cover the program more and more in each step. This process will

terminate when the final test suite covers all the program’s execution paths or

when the number of repeated steps is over the threshold.

V. CASE STUDY

In this section, we analyse a program in detail. It is an implementation of the

bubble sort algorithm.
1: int* sort(int n, int a[])

2: {

3: int i = n - 1; // block S0

4: while (i > 0) { // block S1

5: int j = 0; // block S2

6: while (j < i) { // block S3

7: if (a[j] > a[j + 1]) { // block S4

8: int temp = a[j]; // block S5

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

9: a[j] = a[j + 1];

10: a[j + 1] = temp + 1;

11: }

12: j = j + 1; // block S6

13: }

14: i = i - 1; // block S7

15: }

16: return a; // block S8

17: }

Listing 1: The case study program
We can see the 10

th
 line is logically wrong. Instead of a[j + 1] = temp; it is

written as a[j + 1] = temp + 1;. Because that line belongs to block S5,

we expect S5 should be returned as an error block.

The testing matrix for the above program has 1343 rows and 51 columns. In this

matrix, some rows represent paths that do not have corresponding test cases, or the

genetic algorithm cannot generate test cases for them, and some columns represent

the same blocks because these blocks are repeated in the loop structure. After

deleting these rows and compacting each group of columns that represent the same

blocks into one column, we have a testing matrix with only 11 rows and 9

columns left.

S0 S1 S2 S3 S4 S5 S6 S7 S8

1 1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1

The test outcome after running test cases is {0 1 0 1 1 1 1 1 1 1 0}. The system

compares the test outcome with each column in the testing matrix. Because the

test outcome is identical to the S5-column, the system returns S5 as an error block.

The result is displayed in our website as in Figure 4.

With the error block highlighted in red, we believe the programmer can easily see

where the problem is and fix it without too much effort.

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

Figure 4: The case study

VI. EXPERIMENTS

We tested our system with six well-known algorithms as presented in Table 1.

In each algorithm, we created some different implementations. Each

implementation has exactly one bug. The experiment is used to test whether our

system can localise these bugs or not. The system successfully localises the bug in

the implementation if the set of returned blocks contains the error block.

Table 1: The experimental algorithms

Number Algorithms Descriptions Number of

implementations

I Finding absolute

value

Finding absolute value of

a parameter

7

II Checking odd/even

property

Checking whether a

parameter is odd or even

3

III Finding maximum

number

Finding the maximum

between two parameters

4

IV Calculating factorial Finding factorial of a

parameter

7

V Selection sort Sorting an array using

selection sort algorithm

2

VI Bubble sort Sorting an array using

bubble sort algorithm

2

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Nam P. Mai, Mai H. Dinh, Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Nam P. MAI, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

Example 5. Below are two implementations of the Finding absolute value

Algorithm with bugs.

Implementation 1:
1: int abs(int n) {

2: if (n >= 0) {

3: return n;

4: } else {

5: return n; // should be return –n;

6: }

7: }

Implementation 2:
1: int abs(int n) {

2: if (n >= 0) {

3: return n + 1; // should be return n;

4: } else {

5: return -n;

6: }

7: }

The result of our experiment is shown in Table 2 and Figure 4. The figure shows

the chart comparing right localisations with wrong localisations in each algorithm.

The detailed numbers of right/wrong localisations are in the table. As shown in the

table, our system can localise error blocks successfully 19 times in a total of 22

implementations. The error blocks in the three remaining implementations are not

localised successfully because the generated test suite is not good enough to detect

an error in the tested paths, as explained in Example 6.

Example 6. Below is a wrong implementation of the Finding absolute value

Algorithm.

1: int abs(int n) {

2: if (n >= 5) {

3: return n;

4: } else {

5: return -n;

6: }

7: }

The implementation has two paths and our genetic algorithm can generate test

cases to cover both those paths. But to detect an error, the test suite must not only

cover all the paths but also contain a test case that is larger than 0 and less than

5. Because the two generated test cases do not belong to this interval, it cannot

detect an error in the program, and so the system sees the above program as No

error.

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

This problem of generating best test suite to use in group testing will be addressed

in future work based on the constraint-based test-cases generation algorithm in Le

et al. (2013), but for now we believe our system can be used to assist students

without any serious problems.

Table 2: The experiment results

Algorithms Number of

implementations

Number of

right

localisations

Number of

wrong

localisations

Finding absolute value 7 5 2

Checking odd/even property 3 3 0

Finding maximum number 4 3 1

Calculating factorial 7 7 0

Selection sort 2 2 0

Bubble sort 2 2 0

Total 22 19 (88%) 3 (12%)

0

1

2

3

4

5

6

7

1st

Alg

2nd

Alg

3rd

Alg

4th

Alg

5th

Alg

6th

Alg

Right detections

Wrong detections

Figure 4: The chart represents the experiment results

CONCLUSION

In this paper we present a framework to verify and identify suspicious portions of
programming exercises submitted by students automatically. While verification is
done using theorem proving, group testing theory helps identify error blocks. Our
framework is tested with 22 versions of 6 algorithms with 88% accuracy. Besides
that, our framework can be generalised to any algorithm with a similar structure. In
the future, we intend to publish our system to students and use it as a useful tool to
help students in programming courses.

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

REFERENCES

Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2008). An observation-based

model for fault localization. Proceedings of the 2008 International Workshop on

Dynamic Analysis: Held in Conjunction with the ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA 2008). (pp. 64-70).

Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2009). Spectrum-based multiple

fault localization. Proceeding of the 24th IEEE/ACM International Conference

on Automated Software Engineering (ASE'09), (pp. 88-99).

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for

programming assignments. Computer Science Education, 15(2), 83-102.
Dorfman, R. (1943). The detection of defective members of large populations. The

Annals of Mathematical Statistics, 14, 436-440.

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment

of programming: A review. Journal on Educational Resources in Computing

(JERIC), 5(3), 4.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning, Chapter 3, Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA.

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent

systems for automatic assessment of programming assignments. Proceedings of

the 10th Koli Calling International Conference on Computing Education

Research.. (pp. 86-93).

Jeffrey, D., Gupta, N., & Gupta, R. (2008). Fault localization using value

replacement. Proceedings of the 2008 International Symposium on Software

Testing and Analysis. (pp. 167-178).

Jones, J. A., & Harrold, M. J. (2005). Empirical Evaluation of the Tarantula

Automatic. Proceedings of the 20th IEEE/ACM International Conference on

Automated Software Engineering. (pp. 273-282).

Jurado, F., Redondo, M. A., & Ortega, M. (2012). Using fuzzy logic applied to

software metrics and test cases to assess programming assignments and give

advice. Journal of Network and Computer Applications, 35(2), 695-712.

Kaushal, R., & Singh, A. (2012). Automated evaluation of programming

assignments. Proceedings of 2012 IEEE International Conference on Engineering

Education: Innovative Practices and Future Trends (AICERA), (pp. 1-5).

Le, A. D., Quan, T. T., Huynh, N. T., Nguyen, P. H., & Le, N. V. (2013).

Combined Constraint-Based Analysis for Efficient Software Regression Detection

in Evolving Programs. In M. J. Escalona, J. Cordeiro & B. Shishkov (Ed.),

Software and Data Technologies (pp. 108-120). Springer Berlin Heidelberg.

Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam. Copyright © Long H. Pham,
Tho T. Quan, Hung Q. Ngo, 2013

Assisting Students in Finding Their Own Bugs in Programming Exercises using Verification and
Group Testing Techniques. Long H. PHAM, Mai H. DINH, Tho T. QUAN, Hung Q. NGO

Quan, T. T., Nguyen, P. H., Bui, T. H., Huynh, L. V., & Do, A. T. (2009). A

framework for automatic verification of programing exercises. Proceedings of 2nd

IEEE International Conference on Computer Science and Information Technology

(pp. 41-45).

Renieris, M., & Reiss, S. P. (2003). Fault localization with nearest neighbor

queries. Automated Software Engineering, 2003. Proceedings. 18th IEEE

International Conference on (pp. 30-39).

Zhang, Z., Chan, W. K., & Tse, T. H. (2012). Fault localization based only on

failed runs. Computer, 45(6), 64-71.

Copyright ©2013 IETEC’13, Long H. PHAM, Mai H. DINH, Tho T. QUAN, Hung Q. NGO: The
authors assign to IETEC’13 a non-exclusive license to use this document for personal use and in

courses of instruction provided that the article is used in full and this copyright statement is

reproduced. The authors also grant a non-exclusive license to IETEC’13 to publish this document in
full on the World Wide Web (prime sites and mirrors) on CD-ROM and in printed form within the

IETEC’13 conference proceedings. Any other usage is prohibited without the express permission of the

authors.

